[image: image1.wmf]

Operating System

User State Migration Tool – INF Commands

Microsoft Corporation

Published: January 2003

Abstract

This white paper documents the INF commands used by the User State Migration Tool (USMT) and the Files and Settings Transfer Wizard (FASTWiz) to control what state is migrated. Information Technology (IT) professionals and consultants who customize USMT for Windows XP deployments are the target audience of this document. This document is not comprehensive documentation on USMT or FASTWiz, but instead focuses on the INF commands.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

© 2003 Microsoft Corporation. All rights reserved.

Microsoft, Win32, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States or other countries or regions.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

Introduction
1
The Anatomy of an INF
1
Components and Individual State
1
INF Template
1
[Version] Section
3
[Applications] Section
3
[System Settings] Section
4
[User Settings] Section
4
[.Environment] Section
5
[.Detect] Section
5
[.Detect.n] Section
7
[.Instructions] Section
7
 [Copy This State] Section
8
[Disabled Components] Section
9
[RemapEnvVar] Section
9
[Strings] Section
10
Types, Object Names, and Attributes
11
INF Commands
12
Overview
12
File Commands
13
CopyFiles
14
CopyFilesEx
15
DelFiles
16
ForceSrcFile
17
ForceDestFile
18
Registry Commands
18
AddReg
19
RenReg
19
DelReg
20
RegFile
20
RegFolder
21
RegIcon
22
ForceSrcReg
22
ForceDestReg
22
DestDelReg
22
INI Commands
23
AddIni

23
RenIni

24
DelIni

24
IniFile

25
IniFolder
26
IniIcon

27
ForceSrcIni
28
ForceDestIni
28
Miscellaneous Commands
28
ProcessSection
28
Precedence
28
Re-rooting
29
Recognized INF Variables
31
The Default INFs and Their Components/Applications
33
Migsys.inf
33
Miguser.inf
34
Migapp.inf
34
Sysfiles.inf
35
Migwiz.inf
36
Migration.inf
36
Files and Settings Transfer Wizard INF and Migwiz.inf
36
Migration.inf – The Command-Line State Store
37
Command-Line Parameters And Usage
37
Unicode or ANSI
38
Take All vs. Take Known
38
Suggested Command-Lines
38
Take Known Model (Recommended)
38
Take All Model
39
Command-Line Parameters
39
Scanstate
39
Loadstate
40
Return Codes and Logs
40
Common Scenarios
41
To Create An INF File
41
To Add A Component
41
To Add Individual State
41
Summary
41
Introduction

User state migration is usually an important part of successfully deploying Microsoft® Windows® XP in a large organization. Migrating the user state of an organization's computers typically means handling the special applications, folders, and settings specific to the organization. For the User State Migration Tool (USMT), that means customization of the INF files. This document covers the supported INF commands for USMT.

This document does not cover USMT usage scenarios, migration planning, and USMT tool documentation. The main focus of this document is how to create new INF files and how to customize existing INF files.

This documentation refers only to USMT version 2.5, which released with the Microsoft Windows Server 2003 family for use with Windows XP.

The Anatomy of an INF

An INF file is the set of rules that USMT and the Files and Settings Transfer Wizard (FASTWiz) use to migrate a user’s state. The command-line tools, Scanstate.exe and Loadstate.exe, can use multiple INF files.

Note Sample INF file listings in this document may have line wraps due to margin limitations. If you view this document in Microsoft® Word, please turn on paragraph marks to view the line breaks.

Components and Individual State

The INF file describes components and individual state, and the rules for migrating them. Individual state is the state not associated with a component. Some examples of individual state include a specific registry setting, file, file type, or folder. A component is a set of related rules that define the state for one item. For example, an application’s state, Accessibility Settings, or Classic Desktop can be a component. Both individual state and components are important to a successful migration, and most INF files have both.

When dealing with elements of state that clearly belong together, it is good to take the extra steps to make them a component. Components can be exposed to the user through “Settings” in FASTWiz. Components are also easy blocks to include or exclude for sub-groups in the deployment.

INF Template

The example below incorporates all of the possible sections. It is not a valid sample INF file.

[Version]

Signature = $Windows NT$

[Applications]

<App Section Name>, “Display Name”

Acrobat Reader 40, %acroread40%

[Acrobat Reader 40.Environment]

; %VarName% = <Type>, <Object Name>

%PhotoshopSuite6Path% = Registry, HKLM\Software\Adobe\Photoshop\6.0\ApplicationPath []

[Acrobat Reader 40.Detect]

; How I detect the app is installed on the source, and destination

; Each of these lines are ANDed together

; <Type>, <Object Name>, <Attributes>

Registry, HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Adobe Acrobat 4.0 [UninstallString], EXISTS

Registry, HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Adobe Acrobat 4.0 [ProductId], !EXISTS

[Acrobat Reader 40.Detect.1]

; If you have a x.Detect.1 you do NOT have a x.Detect section for this app

; If either this OR x.Detect.n is true, then the app is installed

; There can be any number of x.Detect.# sections

[Acrobat Reader 40.Detect.2]

; If you have this section you also have a x.Detect.1 and not a x.Detect section for this app

; If either this OR x.Detect.1 is true, then the app is installed

[Acrobat Reader 40.Instructions]

; “Copy This State” section which only executes if the .Detect evaluates to true (or is absent)

; INFRule = AppName.SectionName

DestDelReg = Acrobat Reader 40.DestDelReg

AddReg = Acrobat Reader 40.AddReg

[Acrobat Reader 40.DestDelReg]

HKR\Software\Adobe\Acrobat Reader\4.0\AdobeViewer [AllowOpenFile]

[Acrobat Reader 40.Addreg]

HKR\Software\Adobe\Acrobat Reader\4.0\AdobeViewer [AllowOpenFile]

[Acrobat Reader 40]

; “Copy this State” section which always executes regardless of the .Detect section

; (This assumes Acrobat Reader 40 is listed in the Applications section)

 [Copy This State]

; INFRule = AppName.SectionName

CopyFiles = SampleCopyFileSection

[SampleCopyFileSection]

DIR=C:\Data*

*.FSW, %CSIDL_PERSONAL%

[Strings]

acroread40 = "Adobe Acrobat Reader"
 [Version] Section

Required

Only one per INF

Specific to individual INFs

Each INF needs to have one and only one [Version] section. The [Version] section must always be the same. It contains one line, a signature line.

Parameters

Signature

Always $Windows NT$.
[Version]

Signature = $Windows NT$

[Applications] Section

Optional

Only one per INF

Combined across INFs

The [Applications] section lists all of the components that USMT understands. Each line is a separate component.

The syntax for a detail line is:
Component Section Name, “Display Name”

Parameters

Component SectionName

Unique for each component across all INF files used. Each INF file’s [Applications] section is combined, and Component Section Name must be unique across all used. If it is not unique, each of the lines in the component’s sections are combined with other similar sections. (For example, if there are two MyApp components listed, and each has a [.Detect] section, the lines in each of the [.Detect] sections combine into a single [.Detect] section.)
Display Name

Can use an INF string variable defined in the [Strings] section. Using string variables makes it easier to localize the displayed strings in the INF file.
[Applications]

Acrobat Reader 40, %acroread40%

[Strings]

acroread40 = "Adobe Acrobat Reader"

[System Settings] Section

Optional

Only one per INF file

Combined across INF files

The [System Settings] section lists all of the components that USMT understands. Each line is a separate component.

The syntax for a detail line is:
Component Section Name, “Display Name”

Parameters

Component SectionName

Unique for each component across all INF files used. Each INF file’s [System Settings] section is combined, and Component Section Name must be unique across all used. If it is not unique, each of the lines in the component’s sections are combined with other similar sections. (For example, if there are two MyApp components listed, and each has a [.Detect] section, the lines in each of the [.Detect] sections combine into a single [.Detect] section.)
Display Name

Can use an INF string variable defined in the [Strings] section. Using string variables makes it easier to localize the displayed strings in the INF file.
[System Settings]

Accessibility, %accessibility%

[Strings]

accessibility = "Accessibility"

 [User Settings] Section

Optional

Only one per INF file

Combined across INF files

The [User Settings] section lists all of the components that USMT understands. Each line is a separate component.

The syntax for a detail line is:
Component Section Name,, dir, %CSIDL_NAME%

Parameters

Component SectionName

Unique for each component across all INF files used. Each INF file’s [User Settings] section is combined, and Component Section Name must be unique across all used. If it is not unique, each of the lines in the component’s sections are combined with other similar sections. (For example, if there are two MyApp components listed, and each has a [.Detect] section, the lines in each of the [.Detect] sections combine into a single [.Detect] section.)
%CSIDL_NAME%

The CSIDL_NAME represents the folder that the component refers to.
[User Settings]

Desktop Items,, dir,%csidl_desktopdirectory%

[.Environment] Section

Optional

Only one per component section

Unique for given component across INF files

The [.Environment] section is used to create temporary environment variables for use in the component’s sections. These are primarily used to determine the installation path of either the application or a specific sub-folder for the application (for example, plug-ins). The variable created here can then be used later with an INF rule to migrate specific files to a specific folder, regardless of the application installed in a different folder on the destination. This component section is processed first, even before [.Detect] sections.

The syntax for a detail line is:
%VARIABLENAME% = Type, Object Name
Parameters

VARIABLENAME

Follows the naming rules for an environment variable. It must be unique across INF files.
Type

Can be one of the following:

	Type
	Description

	Registry
	The environment variable is set to the value of the registry setting specified by Object Name.

	Directory
	The environment variable is set to the folder of the path given using Object Name.

	INIFile
	The environment variable is set to the value of the setting specified by Object Name.

Object Name

Has a specific meaning for each of the Types.

	Type
	Meaning of Object Name

	Registry
	RegistryRoot\RegistryKey [SettingName]. [] denotes the (Default) value.

	Directory
	<Drive:>\Folder. UNC paths are also supported.

	INIFile
	<Drive:>\Folder\filename.ini/section/setting. UNC paths are also supported.

More information on Types and Object Names is given below in “Types, Object Names, and Attributes."

[Acrobat Reader 40.Environment]

%PhotoshopSuite6Path% = Registry, HKLM\Software\Adobe\Photoshop\6.0\ApplicationPath []

[.Detect] Section

Optional

 Only one per component

Unique for given component

The [.Detect] section is used to determine if the component is present on the source and destination computers. If the [.Detect] section is omitted, it is assumed that the component is present and the component’s [.Instructions] section is executed.

If there is a [.Detect] section, each of the lines in the [.Detect] section is evaluated and then ANDed together. In order for the component to be detected, each of the lines in the [.Detect] section must be true.

There are also [.Detect.n] sections which are ORed together. See below for more details on the [.Detect.n] sections.

The [.Detect] section improves performance by not processing rules for components that are not installed. The [.Detect] section also makes the FASTWiz UI less confusing for the user because components not detected on the user’s system will not be listed as a component to be migrated.

The syntax for a detail line is:
Type, Object Name, Attributes
Parameters

Type

Can be one of the following:

	Type
	Description

	Registry
	A value of the registry setting specified by Object Name.

	Directory
	A folder of the path specified using Object Name.

	File
	A file specified by Object Name.

	System
	An operating system.

Object Name

Is specific to the Type.

	Type
	Meaning of Object Name

	Registry
	RegistryRoot\RegistryKey [SettingName]. [] denotes the (Default) value.

	Directory
	<Drive:>\Folder. UNC paths are also supported.

	File
	<Drive:>\Folder\Filename.ext. UNC paths are also supported.

	System
	OS.Version Name.SubVersion.

Attributes

Can be one of the following for any Type (except as noted below):

	Attribute
	Value

	Exists
	TRUE if Object Name exists.
Applies to: Registry, Directory, System, File, INIFile

	SameObjectName(ObjName)
	TRUE if ObjName equals Object Name.
Applies to: Registry, Directory, File, INIFile

	SameObjectContent(ObjName)
	TRUE if the content of ObjName and Object Name are equal.
Applies to: Registry, INIFile

	Matches(Value)
	TRUE if Value equals the content of Object Name.
Applies to: Registry, INIFile

	Version(Field, Pattern)
	TRUE if the version number of the FILE object to which Object Name points matches the version specified. Field is the name of the field containing the version information. Pattern indicates the string pattern to match.
Applies to: File, Registry

Note If it is a Registry object, its value must point to a file.

Each attribute can be changed to NOT (or FALSE) by adding an exclamation point (!) to the beginning. For example, !EXISTS means does not exist.

More information on Types, Object Names, and Attributes is given below in “Types, Object Names, and Attributes.”

[Acrobat Reader 40.Detect]

Registry, HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Adobe Acrobat 4.0 [UninstallString], EXISTS

Registry, HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall\Adobe Acrobat 4.0 [ProductId], !EXISTS

[.Detect.n] Section

Optional

(For more information, read the description below.)

The [.Detect.n] sections are similar to the [.Detect] section. All of the lines in a given [.Detect.n] section are ANDed together. The big difference is that the [.Detect.n] sections are ORed together. If any of the [.Detect.n] sections evaluates to TRUE, then the component is detected.

If a component uses [.Detect.n] sections, it must not also have a [.Detect] section. The n in the [.Detect.n] sections is a numeric counter starting at 1. There should only be one [.Detect.1] section and one [.Detect.2] section for a given component across all INF files.

The syntax for a detail line is the same as the syntax for the [.Detect] section:
Type, Object Name, Attributes

[SampleApp.Detect.1]

File, %SampleAppPath%\SampleApp.exe, VERSION("ProductVersion","6.*")

[SampleApp.Detect.2]

File, %SampleAppPath%\SubApp.exe, VERSION("ProductVersion","* 3.*")
[.Instructions] Section

Required (see notes)
Only one per component section

Unique for given component across INF files

The [.Instructions] section provides the INF rules used to migrate the state for the component. The standard INF commands are used in the [.Instructions] section (for more information, see "INF Commands"). Each command will list a section of registry objects or file objects that the command acts on.

It is recommended that these section names begin with the component name they belong to. This is a convention, not a requirement, but it improves the maintenance and readability of the INF files.

The [.Instructions] section is not executed if the component is not detected via the [.Detect] section or the [.Detect.n] sections. If the component does not have a [.Detect] section or any [.Detect.n] sections, it is assumed to be detected, and the [.Instructions] section is always executed (even if the component is not installed).

The [.Instructions] section is required for a component, but not for an INF file.

The syntax for a detail line is:
INFCommand = Component.SectionName

Parameters

INFCommand

Any of the INF commands listed under "INF Commands" in this document.

Component SectionName

Any valid INF section name. By convention the format of the name is Component.INFCommand. There must be a matching section in the INF file that contains the command details.
[Acrobat Reader 40.Instructions]

DestDelReg = Acrobat Reader 40.DestDelReg

AddReg = Acrobat Reader 40.AddReg

[Acrobat Reader 40.DestDelReg]

HKR\Software\Adobe\Acrobat Reader\4.0\AdobeViewer [AllowOpenFile]

[Acrobat Reader 40.Addreg]

HKR\Software\Adobe\Acrobat Reader\4.0\AdobeViewer [AllowOpenFile]
[Copy This State] Section

Required (see notes)

Only one per INF

Combined across INFs

The [Copy This State] section lists the INF commands used to migrate individual state. It is the equivalent to the [.Instructions] section, but for individual state instead of component state. The standard INF commands are used in the [Copy This State] section (for more information, see "INF Commands"). Each command will list a section of registry objects or file objects that the command acts on.

The [Copy This State] section is always executed when in the INF file.

The [Copy This State] section is required for individual state, but not for an INF file.

The syntax for a detail line is:
INFCommand = SectionName

Parameters

INFCommand

Any of the INF commands listed under "INF Commands" in this document.
SectionName

Any valid INF section name. There must be a matching section in the INF file that contains the command details. The section names must be unique across all INF files. If not, they are combined with similarly named sections.

[Copy This State]

CopyFiles = SampleCopyFileSection

[SampleCopyFileSection]

DIR = C:\Data*

*.FSW, %CSIDL_PERSONAL%

[Disabled Components] Section

Optional (see notes)

Only one per INF file

Combined across INF files

Note This section is not used in any of the shipping INF files. This section has only one main purpose: to disable the migration of Network Printers and Mapped Drives.

The [Disabled Components] section lists the section names that must be “turned off” or not used. This section does override the [Copy This State] section, and the [.Instructions] section.

The syntax for a detail line is:
SectionName

Parameters

SectionName

Any valid INF section name. There must be a matching section in the INF file that contains the command details. The section names must be unique across all INF files. If not, they are combined with similarly named sections.

[Disabled Components]

Net Printers and Drives

[RemapEnvVar] Section

Optional (see notes)

Only one per INF file

Combined across INF files

Note This section is not used in any of the shipping INF files. This section has only one main purpose: to control the re-mapping and re-rooting of folders during migration.

The [RemapEnvVar] section provides a way to indicate which environment variables must be considered for re-mapping and re-rooting during migration. Normally, only “known roots” like CSIDLs are used for this. By using the [RemapEnvVar] section and an environment variable, you can create new “known roots.”

The syntax for a detail line is:
EnvironmentVariable

Parameters

EnvironmentVariable

Any valid environment variable defined on both the source and destination system. It must not be enclosed in percent signs (%) as is normally done with environment variables. The [RemapEnvVar] sections are combined across all INF files used.
[RemapEnvVar]

CDATA

This is an example of using [RemapEnvVar] with the two most common methods.

[RemapEnvVar]

CDATA

MYSTUFF

[Copy This State]

CopyFiles = RemapExample

[RemapExample]

DIR = %CDATA%*

DIR = %MYSTUFF%*, %CSIDL_PERSONAL%

First, examine CDATA. On the source computer CDATA is defined as “C:\DataFiles”. On the destination computer it is defined as “C:\Documents and Settings\All Users\My Documents\Data”. This section of the INF file copies all files and folders in “C:\DataFiles” on the source computer, and places them in “C:\Documents and Settings\All Users\My Documents\Data”, preserving the folder structure under “C:\DataFiles”. For example, “C:\DataFiles\TrpRpt\Fabrikam.doc” becomes “C:\Documents and Settings\All Users\My Documents\Data\TrpRpts\Fabrikam.doc”.

MYSTUFF is an example of creating a larger known root used in path substitution. In the example above, MYSTUFF is defined as “C:\MyStuff” on the source computer, and as “C:\My Stuff” on the destination computer. Normally, with a rule like “DIR = C:\MyStuff, %CSIDL_PERSONAL%”, “C:\” is the largest known root. So, if, on the source, there is “C:\MyStuff\TrpRpt\Fabrikam.doc”, it becomes “C:\Documents and Settings\<UserName>\My Documents\MyStuff\TrpRpt\Fabrikam.doc”. By using the [RemapEnvVar] section, “C:\MyStuff” becomes the largest known root, resulting in “C:\Documents and Settings\<UserName>\My Documents\TrpRpt\Fabrikam.doc.

[Strings] Section

Optional

Only one per INF file

Combines across INF files

The [Strings] section defines the string variables used in the INF file. The [Strings] section is combined across all INF files used, so each string variable must be unique across INF files.

The syntax for a detail line is:
StringVariable = “String Value”

Parameters

StringVariable

A variable name unique across all used INF files. It must also be unique from [.Environment] variables and system environment variables. It must begin with a letter.
String Value
The value for the variable.
[Strings]

acroread40 = "Adobe Acrobat Reader"

Types, Object Names, and Attributes

Type can be any of the following:

	Type
	Description

	Directory
	Refers to any folder (local or on the network).

	File
	Refers to any file (local or on the network).

	INIFile
	Refers to a value in a specified INI file.

	Registry
	Refers to a registry tree, key, or value.

	System
	Refers to the operating system.

Object Name is specific to the Type as follows:

	Type
	Meaning of Object Name

	Directory
	A standard UNC or DOS path

Prototype:
<Drive>:\Folder

\\ServerName\Share\Folder
Example:
Directory, %CSIDL_PERSONAL%\TripRpts

	File
	The full path and file name of a file.

Prototype:
<Drive>:\Folder\Filename.ext

\\ServerName\Share\Folder\Filename.ext
Example:
File, %CSIDL_PERSONAL%\TripRpts\Fabrikam.doc

	INIFile
	A “registry” value stored in an INIFile

Prototype:
<Drive>:\Folder\sample.ini/section/key

\\ServerName\Share\Folder\sample.ini/section/key
Example:
IniFile, %WINDIR%\myapp.ini/Settings/DataFolder

	Registry
	A registry tree, key, or value

Prototype:
RegistryRoot\RegistryKey [SettingName]
Example:
Registry, HKR\Software\MyApp\UserInfo [UserID]

Note Open and closed square brackets ([]) denote the (Default) value.

	System
	Version of operating system

Prototype:
OS.Version Name

OS.Version Name can be any of the following:

	OS.Version Name for a Single OS Version
	Meaning

	9X.Windows 95.Gold
	Windows 95 Gold

	9X.Windows 95 – OSR2.Gold
	Windows 95 OSR2

	9X.Windows 98.Gold
	Windows 98 Gold

	9X.Windows 98.Second Edition
	Windows 98 Second Edition

	9X.Windows Millennium.Gold
	Windows Millennium Gold

	NT.Windows NT4.Gold
	Windows NT 4 Gold

	NT.Windows 2000.Gold
	Windows 2000 Gold

	NT.Windows 2000.XP
	Windows XP

	OS.Version Name for OS Family Groupings
	Meaning

	9X.Windows 95
	Windows 95 Gold and OSR2

	9X.Windows 98
	Windows 98 Gold and Second Edition

	9X
	All versions of Windows 95/98/Millennium

	NT.Windows 2000
	Windows 2000 and Windows XP

	NT
	All versions of Windows NT/2000/XP

Object Name can include system environment variables, CSIDLs, [Component.Environment] variables, and string variables.

Attribute can be one of the following for any Type (except as noted below):

	Attribute
	Value

	Exists
	Evaluates to TRUE if Object Name exists.

Applies to: Registry, Directory, System, File, INIFile

	SameObjectName(ObjName)
	Evaluates to TRUE if ObjName extends out to be equal to Object Name.

Applies to: Registry, Directory, File, INIFile

	SameObjectContent(ObjName)
	Evaluates to TRUE if the content of ObjName equals the content of Object Name.

Applies to: Registry, INIFile

	Matches(Value)
	Evaluates to TRUE if value equals the content of Object Name.

Applies to: Registry, INIFile

	Version(Field, Pattern)
	Evaluates to TRUE if the version number of the FILE object to which Object Name points matches the version specified. Field indicates the name of the field that contains the version information. Pattern indicates the string pattern to match. Wildcards can be used in Pattern.

Applies to: File, Registry

Note If it is a Registry object, its value must point to a file.

INF Commands

Overview

These are the INF commands used to indicate what state to migrate and how. With these commands you can migrate files, folders, registry trees, keys, and values. During migration these items can be renamed or moved to a new location. These are the core commands of the migration INF files.

INF commands are used in [Copy This State] and [Component.Instructions] sections.

The syntax for a detail line is:
INFCommand = UniqueSectionName

Parameters

INFCommand

Any one of the INF commands listed below.
UniqueSectionName

The section name with the details for the INF command. It must be unique across all INF files. If it is part of the component, it must follow the naming convention Component.INFCommand, although it is not required. The information about what the INF command specifically acts on is contained in the details section for that INF command. A single INF command can have multiple defined detail sections (one per line).

[Copy This State]

CopyFiles = SampleCopyFileSection

CopyFiles = InHouseFileTypes

[SampleCopyFileSection]

DIR = C:\Data*

[InHouseFileTypes]

*.nat

*.ell

File Commands

File commands handle migrating folders, file types, and individual files. Migrated shortcuts to files which are relocated during migration are corrected to point to the new file location. By default, all local drives are scanned, but rules can be drive-specific, or even folder-specific. It is recommended that you change partitions between the source computer and destination computer.

Wildcards

Wildcards are supported where * is any number of characters (including 0) and ? is any single character. (The wildcards follow the general usage rules of MS-DOS.)

Dealing With Folders

When a detail section is referring to a folder, the line needs to start with DIR =.

File Collision

If a file is migrated to the destination and another file already exists on that destination, they collide. If the files are the same, the source file is discarded (because the destination is the same). If the files are not the same, and neither of the special file rules, ForceDestFile or ForceSrcFile, are used, then the file is renamed, appending an “(n)” at the end, where n is a numeric counter starting with 1.

Usage Of Variables

System environment variables, [Component.Environment] variables, string variables, and CSIDLs are supported in the detail lines of INF commands. See “Recognized INF Variables” for details on variables automatically supported by USMT.

Some examples:

[Copy This State]

CopyFiles = SampleCopyFileSection

[SampleCopyFileSection]

DIR = C:\Data*

DIR = C:\Reports

DIR = ?:\Stuff*

*.FSW, %CSIDL_PERSONAL%

C:\Data*.doc, %CSIDL_PERSONAL%

C:\Data**.xls, %CSIDL_PERSONAL%

In the above example, the line “DIR = C:\Data*” refers to the folder C:\Data and all its subfolders. So, both the folders and all files in those folders will be migrated.

The line “DIR = C:\Reports” includes the folder C:\Reports and all files in it, but not the subfolders in C:\Reports.

The line “DIR = ?:\Stuff*” includes the folder \Stuff on the root of any local non-removable drive. For example, if there is a C:\Stuff and a D:\Stuff, both are migrated.

The line “*.FSW, %CSIDL_PERSONAL%” refers to any file matching the pattern.

The line “C:\Data*.doc, %CSIDL_PERSONAL%” refers to all files matching the *.DOC pattern in the C:\Data folder.

The line “C:\Data**.xls, %CSIDL_PERSONAL%” refers to all files matching the *.XLS pattern in the C:\Data folder or any of its subfolders.

CopyFiles

CopyFiles includes files or folders in the list of items to migrate. CopyFiles can also have the file or folder re-rooted during migration. Any known portions of the path will automatically be converted. For example, migrating C:\My Documents\reports\sample.doc from a Windows 98 system, the “C:\My Documents” portion is known as %CSIDL_PERSONAL% (My Documents). This would automatically be converted on the Windows XP system to the new My Documents folder, C:\Documents and Settings\UserName\My Documents. So the final file location would be:
C:\Documents and Settings\UserName\My Documents\Reports\sample.doc.

The syntax for a detail line about files is:
Path\Filename.ext, NewRootPath

Parameters

Path\Filename.ext
The file pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLS. It does not require a full path to be given. UNC paths are supported.

Examples
*.doc, %CSIDL_PERSONAL%
%CSIDL_PROGRAMFILES%**.xls, %CSIDL_PERSONAL%\SprdShts
mymoney.mny

NewRootPath
Optional: If used, the file(s) are re-rooted to the new path given.

Tip: For a managed environment you want to move all of a user’s “intellectual property” files into their profile, specifically to My Documents (%CSIDL_PERSONAL%).
The syntax for a detail line about folders is:
DIR = Path, NewRootPath
Parameters

Path

The folder pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. UNC paths are supported.

Examples

DIR = %CSIDL_PERSONAL%*
DIR = ?:\Data*
DIR = C:\Reports, %CSIDL_PERSONAL%

NewRootPath
Optional. If used, the file(s) are re-rooted to the new path given.

Tip: For a managed environment, move all of a user’s “intellectual property” files into their profile, specifically to My Documents (%CSIDL_PERSONAL%).
Normally, there are multiple detail lines.

CopyFilesEx

CopyFilesEx is similar to CopyFiles with one exception. CopyFilesEx does not re-root files and folders when a NewRootPath is given. Instead, the files and folders are simply moved directly to that path. For example:

Given the CopyFilesEx details of:

*.doc, %CSIDL_PERSONAL%

and a file on a Windows 98 source of:

C:\My Documents\reports\sample.doc

the final file location would be:

C:\Documents and Settings\UserName\My Documents\sample.doc.

Notice that the “reports” subfolder is not preserved.

This works similarly for migrating folders. The folder is moved to the given destination, but the internal files and folder structure are preserved. For example:

Give the CopyFilesEx details of:

DIR=C:\Data, %CSIDL_PERSONAL%

and a file and folder structure on the source of:

C:\Data

C:\Data\expenses.xls

C:\Data\TripRpt\Fabrikam.doc
The final file and folder structure would be:

C:\Documents and Settings\UserName\My Documents\Data

C:\Documents and Settings\UserName\My Documents\Data\expenses.xls

C:\Documents and Settings\UserName\My Documents\Data\TripRpt\Fabrikam.doc

The syntax for a detail line about folders is:
Path\Filename.ext, NewtPath

Parameters

Path\Filename.ext
The file pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. It does not require a full path to be given. UNC paths are supported.

Examples

*.doc, %CSIDL_PERSONAL%
%CSIDL_PROGRAMFILES%**.xls, %CSIDL_PERSONAL%\SprdShts

NewPath
Optional. If used, the file(s) are written to the new path given.

Tip: For a managed environment, move all of a user’s “intellectual property” files into their profile, specifically to My Documents (%CSIDL_PERSONAL%).
The syntax for a detail line about folders is:
DIR = Path, NewtPath
Parameters

Path

The folder pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. UNC paths are supported.

Example

DIR = C:\Reports, %CSIDL_PERSONAL%

NewRootPath
Optional. If used, the file(s) are written to the new path given.

Tip: For a managed environment, move all of a user’s “intellectual property” files into the user profile, specifically to My Documents (%CSIDL_PERSONAL%).
Normally, there are multiple detail lines.

If the file or folder is not moved to a new location, then use CopyFiles instead of CopyFilesEx.

DelFiles

This does not actually delete any file and is safe to use.

DelFiles excludes files from migration. A common use of this command is to exclude temporary files from folders included in the migration. For example, assuming %CSIDL_PERSONAL% is migrated (which it is by default), including a DelFiles rule to exclude %CSIDL_PERSONAL%**.tmp would exclude all *.tmp files in the My Documents folder hierarchy from migration.

The syntax for a detail line about folders is:
Path\Filename.ext

Parameters

Path\Filename.ext
The file pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. It does not require a full path to be given. UNC paths are supported.

Examples

*.tmp
%CSIDL_PERSONAL%**.tmp

NewRootPath
Optional. If used, the file(s) are re-rooted to the new path given.
Tip: For a managed environment, move all of a user’s “intellectual property” files into the user profile, specifically to My Documents (%CSIDL_PERSONAL%).

The syntax for a detail line about folders is:
DIR = Path
Parameters

Path

The folder pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. UNC paths are supported.

Example

DIR = %CSIDL_INTERNET_CACHE%*

Normally, there are multiple detail lines.

ForceSrcFile

ForceSrcFile is a special command. By itself it does not affect whether a file or folder is migrated. It checks whether a file is migrated,and if there is already a file with the same name of the destination, it determines how to handle the name collision. When ForceSrcFile is used, the file from the source will overwrite the destination file.

The syntax for a detail line about files is:
Path\Filename.ext

Parameters

Path\FileName.ext

The file pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. It does not require a full path to be given. UNC paths are supported.

The syntax for a detail line about folders is:
DIR = Path
Parameters

Path
The folder pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. UNC paths are supported.

Important Because this can lead to data loss on the destination (for example, if the destination file had valid data in it), it is recommended that you use this command only in extreme cases. Also, because this command is rarely used, most often there is only one detail line in the section, although it does support multiple lines.

ForceDestFile

ForceDestFile is a special command. By itself it does not affect whether a file or folder is migrated. It checks whether a file is migrated,and if there is already a file with the same name of the destination, it determines how to handle the name collision. When ForceDestFile is used, the file from the source will be discarded. It will not be given a new name as normally happens with file collision, nor will it overwrite the destination file.

The syntax for a detail line about files is:
Path\Filename.ext

Parameters

Path\Filename.ext
The file pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. It does not require a full path to be given. UNC paths are supported.

The syntax for a detail line about folders is:
DIR = Path
Parameters

Path
The folder pattern used for the rule. It can contain wildcards, system environment variables, component environment variables, or CSIDLs. UNC paths are supported.

Important Because this can lead to data loss, it is recommended that you use this command only in extreme cases. Also, because it is rarely used, most often there is only one detail line in the section, although it does support multiple lines.

Registry Commands

Registry commands handle the migration of registry trees, keys, and values. They can also handle the migration of files, folders, or icons that a registry value points to. By default, all of HKey_Current_User is migrated by the command-line tools, except for the registry trees, keys, and values excluded. Using /x /s /f /u will cause only included registry trees, keys, and values to be migrated.

Wildcards

Wildcards are supported. * refers to any number of characters (including 0). ? is any single character.

Registry Collision

When a registry tree, key, or value is migrated, and it already exists on the destination, the registry items collide. If neither of the special commands ForceDestReg or ForceSrcReg are used, then the destination value is overwritten with the source value.

Usage Of Variables

System environment variables, [Component.Environment] variables, string variables, and CSIDLs are supported in the detail lines of INF commands.

[Copy This State]

AddReg = SampleAddRegSection

[SampleAddRegSection]

HKR\Software\MyCompany\MyApp\Settings*

HKLM\Software\MyCompany\MyApp\Settings [HighScore]

HKR\Software\MyCompany\MyApp\Profiles []

In the above example, the line “HKR\Software\MyCompany\MyApp\Settings*” says to migrate the registry tree starting with HKEY_CURRENT_USER\Software\MyCompany\MyApp\Settings.

The line “HKLM\Software\MyCompany\MyApp\Settings [HighScore]” says to migrate the specific value HighScore from the registry key HKEY_LOCAL_MACHINE\Software\MyCompany\MyApp\Settings.

The link “HKR\Software\MyCompany\MyApp\Profiles []” says to migrate the default value for the key HKEY_CURRENT_USER\Software\MyCompnay\MyApps\Profiles.

AddReg

AddReg includes registry trees, keys, or values in what is migrated.

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue]

Parameters

RegRoot
Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.
RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue
Optional. This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

Normally, there are multiple detail lines.

RenReg

RenReg, like AddReg, adds a registry tree, key, or value to the list of objects to migrate, but it also provides a way to move that registry tree, key, or value to a new location.

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue] = NewRegPath
Parameters

RegRoot
Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.

RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue
Optional: This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

NewRegPath
Is the registry tree that includes items matching the left side pattern. The wildcard items are preserved, but the specifically called out items (aside from value) are replaced with the new path.

Example

HKLM\Software\MyApp\Profiles* = HKR\Software\MyComp\MyApp\Profiles

This will move all registry trees, keys, and values in the HKLM profiles tree to the HKR profiles tree preserving their internal structure.

Sometimes there are multiple detail lines.

DelReg

DelReg excludes registry trees, keys, or values in what is migrated.

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue]

Parameters

RegRoot
Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.

RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue
Optional. This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

Normally, there are multiple detail lines.

RegFile

RegFile is very similar to AddReg. It is used to include registry trees, keys, or values in what is migrated. The added feature of RegFile is that if the registry key points to a file, that file is also migrated. The normal automatic path repair is done (as explained in CopyFiles) on the file’s path. Those changes are also reflected in registry value. Also, like CopyFiles, you can use RegFile to re-root a file (for more information, see "Re-rooting").

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue] = NewRegPath, NewRootPath
Parameters

RegRoot
Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.
RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue

Optional. This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

NewRegPath
Optional. Items that match the left side pattern are moved into this registry tree. The wildcard items are preserved, but the specifically called out items (aside from value) are replaced with the new path.

Example

HKLM\Software\MyApp\Profiles* = HKR\Software\MyComp\MyApp\Profiles

This will move all registry trees, keys, and values in the HKLM profiles tree to the HKR profiles tree, preserving their internal structure.

NewRootPath
Optional. If used, the file(s) are re-rooted to the new path given.

Tip: For a managed environment you want to move all of a user’s “intellectual property” files into the user profile, specifically to My Documents (%CSIDL_PERSONAL%).

Normally, there are multiple detail lines.

RegFolder

RegFolder is very similar to RegFile, except that if the registry key points to a folder, the contents of the folder are also migrated. The normal automatic path repair is done (as explained in CopyFiles) on the file's path. Those changes are also reflected in registry value. Also, like CopyFiles, you can use RegFolder to re-root a file (for more information, see "Re-rooting").

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue], NewRootPath
Parameters

RegRoot
Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.

RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue
Optional. This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

NewRootPath
Optional. If used, the file(s) are re-rooted to the new path given.

Tip: For a managed environment, move all of a user’s “intellectual property” files into their profile, specifically to My Documents (%CSIDL_PERSONAL%).

Normally, there are multiple detail lines.

RegIcon

RegIcon is very similar to AddReg. It is used to include registry trees, keys, or values in what is migrated. The added feature of RegIcon is that if the registry key points to an icon, the icon is also migrated. The icon is extracted and added to a migrated icons file. The registry value is updated to reflect this change.

The syntax for a detail line is:
RegRoot\RegKey\RegSubKey [RegValue]

Parameters

RegRoot

Can be either HKLM for HKey_Local_Machine or HKR for HKey_Current_User.

RegKey\RegSubKey
Any combination of registry keys and subkeys.

RegValue
Optional. This is a specific registry value in the given key. For the (Default) value of a key, use opening and closing square brackets ([]).

ForceSrcReg

This is the default behavior.

ForceSrcReg does not affect anything if a registry tree, key, or value is migrated. If it is migrated and the same value exists on the destination computer, this INF command indicates that the destination computer must be overwritten with the source. This is the default behavior.

ForceDestReg

ForceDestReg does not affect anything if a registry tree, key, or value is migrated. If it is migrated and the same value exists on the destination computer, this INF command indicates that the value on the source computer must be discarded, and the destination computer must be left as it is.

DestDelReg

This is a dangerous command, and must be used with extreme caution.

Important DestDelReg will delete the registry tree, key, or value specified from the destination computer before any other migration is done. This is a permanent deletion. The main reason for using this command is to enable the migration of default application settings, where the application stores the “default” settings by not having a registry value for them. If the tree on the destination is deleted first, then if the value did exist (with a non-default value set) the “default” will be migrated, because after the migration of the keys, it will be absent.

Again, this is a dangerous INF command, and must be used only by advanced users and in extreme cases. It is recommended that you completely back up the operating system on which you test.

INI Commands

INI commands handle the migration of settings stored in INI files. They can also handle the migration of files, folders, or icons that a setting points to.

Wildcards

Wildcards are supported. * refers to any number of characters (including 0). ? is any single character.

Setting Collision

When a setting is migrated, and it already exists on the destination, they collide. If neither of the special commands, ForceDestIni or ForceSrcIni, are used, then the destination setting is overwritten with the source setting.

Usage Of Variables

System environment variables, [Component.Environment] variables, string variables, and CSIDLs are supported in the detail lines of INF commands.

 [Applications]

TestApp, Test Application

[TestApp.Environment]

TestAppPath = Registry, HKLM\Software\TestApp [AppPath]

[TestApp.Instructions]

CopyFiles = TestApp.CopyFiles

[TestApp.TestApp.CopyFiles]

Dir=%TestAppPath%\Library*

Dir=%TestAppPath%\Playlist*

AddIni

AddIni includes settings in an INI file in what is migrated.

The syntax for a detail line is:
INIFileName, Section, Setting
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.
Section
This is the section the setting or settings to migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to migrate. Wildcards are supported. For example, when all settings in a specific section need to be migrated this can simply be a *.

Normally, there are multiple detail lines. The IniFileName does not have to be the same for all lines in the section.

RenIni

RenIni, like AddIni, adds a setting to the list of objects to migrate, but it also provides a way to move that setting to a new location.

The syntax for a detail line is:
IniFileName, Section, Setting, DestIniFileName, DestSection, DestSetting
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.

Section
This is the section the setting or settings to migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to migrate. Wildcards are supported. For example, when all settings in a specific section need to be migrated this can simply be a *.

DestIniFileName
This is the file name of the INI file the setting is migrated to. Wildcards are not supported. If this is left blank, IniFileName (the source filename) is used. A full path is not required, and if not supplied, the path of the source file is used (although mapped to the new system).

DestSection
This is the Section the migrated settings are written to. Wildcards are not supported. If this field is left blank, the original Section names are used. If this field is present, settings are written to the specified Section name regardless of their source Section name.

DestSetting
This is the Setting the migrated setting is written to. Wildcards are not supported. If the field is left blank, the original Setting names are used. If the field is present, settings migrated (via this command) are written to that setting name. When migrating multiple source settings with this RenIni line, leave this field blank.

Example

C:\Windows\System32\MyApp.ini, Win95 Settings, *,,Settings,

This will move all settings in the C:\Windows\System32\MyApp.ini in the Win95 Settings section to the Settings section of a newly created C:\Windows\System32\MyApp.ini on the destination computer.

Sometimes there are multiple detail lines.

DelIni

DelIni excludes settings from what is migrated.

The syntax for a detail line is:
INIFileName, Section, Setting
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.

Section
This is the section the setting or settings to not migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to not migrate. Wildcards are supported. For example, when all settings in a specific section need to not be migrated this can simply be a *.

Normally, there are multiple detail lines.

IniFile

IniFile is very similar to AddIni. It is used to include settings in what is migrated. The added feature of IniFile is if the setting points to a file, that file is also migrated. The normal automatic path repair is done (as explained in CopyFiles) on the file’s path. Those changes are also reflected in registry value. Also, like CopyFiles, you can use IniFile to re-root a file (for more information, see "Re-rooting").

The syntax for a detail line is:
IniFileName, Section, Setting, DestIniFileName, DestSection, DestSetting, NewRootPath, LocationHint
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.

Section
This is the section the setting or settings to migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to migrate. Wildcards are supported. For example, when all settings in a specific section need to be migrated, this can simply be a *.

DestIniFileName
This is the file name of the INI file the setting is migrated to. Wildcards are not supported. If this is left blank, IniFileName (the source filename) is used. A full path is not required, and if not supplied, the path of the source file is used (although mapped to the new system).

DestSection
This is the Section the migrated settings are written to. Wildcards are not supported. If this field is left blank, the original Section names are used. If this field is present, settings are written to the specified Section name regardless of their source Section name.

DestSetting
This is the Setting the migrated setting is written to. Wildcards are not supported. If the field is left blank, the original Setting names are used. If the field is present, settings migrated (via this command) are written to that setting name.

NewRootPath
The file is re-rooted to this path.

Tip: For a managed environment, move all of a user’s “intellectual property” files into the user profile, specifically to My Documents (%CSIDL_PERSONAL%).

LocationHint
This is a semi-colon (;) separated list of paths used to find the object if the path provided is incomplete.

For example: if you have an INI file containing “arial.ttf” and a LocationHint containing “c:\windows;c:\windows\system32;c:\windows\fonts”, USMT will try to find arial.ttf by looking in each of those folders. When searching a path, it treats it as though it were part of the original path, so, for example, when using c:\windows, it would look for c:\windows\arial.ttf.

Normally, there are multiple detail lines. See RegFile for a more complete description.

IniFolder

IniFolder is very similar to IniFile, except that if the setting points to a folder, the contents of the folder are also migrated. The normal automatic path repair is done (as explained in CopyFiles) on the file's path. Those changes are also reflected in the setting. Also, as with CopyFiles, you can use IniFolder to re-root a file (for more information, see "Re-rooting").

The syntax for a detail line is:
IniFileName, Section, Setting, DestIniFileName, DestSection, DestSetting, NewRootPath, LocationHint
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.

Section
This is the section the setting or settings to migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to migrate. Wildcards are supported. For example, when all settings in a specific section need to be migrated, this can simply be a *.

DestIniFileName
This is the file name of the INI file the setting is migrated to. Wildcards are not supported. If this is left blank, IniFileName (the source filename) is used. A full path is not required, and if not supplied, the path of the source file is used (although mapped to the new system).

DestSection
This is the Section the migrated settings are written to. Wildcards are not supported. If this field is left blank, the original Section names are used. If this field is present, settings are written to the specified Section name regardless of their source Section name.

DestSetting
This is the Setting the migrated setting is written to. Wildcards are not supported. If the field is left blank, the original Setting names are used. If the field is present, settings migrated (via this command) are written to that setting name.

NewRootPath
The files are re-rooted to this path.

Tip: For a managed environment, move all of a user’s “intellectual property” files into the user profile, specifically to My Documents (%CSIDL_PERSONAL%).

LocationHint
This is a semi-colon (;) separated list of paths used to find the object, if the path provided is incomplete.

For example: if you have INI file containing “arial.ttf” and a LocationHint containing “c:\windows;c:\windows\system32;c:\windows\fonts”, USMT will try to find arial.ttf by looking in each of those folders. When searching a path, it treats it as though it were part of the original path, so, for example, when using c:\windows, it would look for c:\windows\arial.ttf.

Normally, there are multiple detail lines.

IniIcon

IniIcon is very similar to AddIni. It is used to include settings in what is migrated. The added feature of IniIcon is that if the setting points to an icon, the icon is also migrated. The icon is extracted and added to a migrated icons file. The INI setting is updated to reflect this change.

The syntax for a detail line is:
IniFileName, Section, Setting, DestIniFileName, DestSection, DestSetting,, LocationHint
Parameters

IniFileName
This is the file name of the INI file searched. Wildcards are not supported.

Section
This is the section the setting or settings to migrate are in. Wildcards are supported.

Setting
This is the specific setting, or settings, to migrate. Wildcards are supported. For example, when all settings in a specific section need to be migrated, this can simply be a *.

DestIniFileName
This is the file name of the INI file the setting is migrated to. Wildcards are not supported. If this is left blank, IniFileName (the source filename) is used. A full path is not required, and if not supplied, the path of the source file is used (although mapped to the new system).

DestSection
This is the Section the migrated settings are written to. Wildcards are not supported. If this field is left blank, the original Section names are used. If this field is present, settings are written to the specified Section name regardless of their source Section name.

DestSetting
This is the Setting the migrated setting is written to. Wildcards are not supported. If the field is left blank, the original Setting names are used. If the field is present, settings migrated (via this command) are written to that setting name.

Intentionally Empty Field
There is an intentionally empty field between DestSetting and LocationHint.

LocationHint
This is a semi-colon (;) separated list of paths used to find the object, if the path provided is incomplete.

For example: if you have an INI file containing “arial.ttf” and a LocationHint containing “c:\windows;c:\windows\system32;c:\windows\fonts”, USMT will try to find arial.ttf by looking in each of those folders. When searching a path, it treats it as though it were part of the original path, so, for example, when using c:\windows, it would look for c:\windows\arial.ttf.

ForceSrcIni

This is the default behavior.

ForceSrcIni does not affect anything if a setting is migrated. If it is migrated and the same value exists on the destination computer, this INF command indicates that the destination computer must be overwritten with the source. This is the default behavior. This syntax matches that of AddIni, and should be in terms of the source location.

ForceDestIni

ForceDestIni does not affect anything if a registry tree, key, or value is migrated. If it is migrated and the same value exists on the destination computer, this INF command indicates that the value on the source computer must be discarded, and the destination computer must be left as it is. This syntax matches that of AddIni, and should be in terms of the source location.

Miscellaneous Commands

ProcessSection

This command tells the INF file to process another section as part of this section. It is an include command for INFs. A common example of its use is if there are two or more high-level components that use the state from the same sub-component (or another component). For example, use this command if the Modem Settings are migrated individually, as part of Dial-Up Networking settings or as part of Internet Browser settings. Instead of defining those settings three times, define them once as Modem Settings, and then include them in both Dial-Up Networking and Internet Browser by using a Process Section command, pointing to Modem Settings in each.

Precedence

The general rule for precedence is a simple one, the rule that most closely matches the circumstances of the object is the rule that is used. For example, a general CopyFiles rule like “*.doc, %CSIDL_PERSONAL%” is less specific about C:\TripRpt\Fabrikam.doc than a rule like “DIR = C:\TripRpt*”. In this example, Fabrikam.doc would remain in the folder C:\TripRpt on the new computer, instead of being re-rooted to My Documents. However, if there is also a rule saying “C:\TripRpt*.doc, %CSIDL_PERSONAL%” then it would also be migrated to My Documents.

In the case where there are two rules that are equally specific about a file, the rule precedence order for registry rules is:

1. RegFile

2. RegFolder

3. RegIcon

4. RenReg

5. AddReg

6. DelReg

The rule precedence order for file rules is:

7. RegFile

8. RegFolder

9. SysFile.inf – EXCLUDE

10. CopyFilesEx

11. CopyFiles

12. DelFiles

If two similar rules refer to the same file but with different specifications, the outcome is based on the order in which the rules are encountered. For example, if there is one CopyFiles rule that says “*.doc” and another CopyFiles rule that says “*.doc, %CSIDL_PERSONAL%”, the files either are moved or not moved to the My Documents folder as part of the migration, depending on the order in which the rules were encountered.

Note In this case, all of the files handled by these rules would have the same outcome of either being moved or not being moved.

The advice on rule precedence is:

· Keep it simple.

· Don’t have conflicting rules.

· Test, test, test.

Re-rooting

A simple definition of re-rooting is to move the files to a new location, preserving the folder structure. More specifically, the largest known root in the source path is replaced with the new root path provided. Known roots include CSIDLs, system environment variables, and [Component.Environment] variables, plus the default root path (\). In most cases, the largest known path will be the root path of the drive, for example C:\. But sometimes a large root path is found and replaced.

Examples

CopyFiles rule details:

*.doc, %CSIDL_PERSONAL%

Source Files

These are on a Windows 98 computer.

C:\sample1.doc

C:\Data\sample2.doc

C:\Program Files\Sample Suite\SubApp\sample3.doc

C:\My Documents\sample4.doc

C:\My Documents\My Pictures\sample5.doc

C:\Windows\sample6.doc

C:\Windows\System32\sample7.doc
Destination and Reasons for Change

Sample 1:

Largest found root is C:\. It is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\sample1.doc

Sample 2:

Largest found root is again C:\. It is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\Data\sample2.doc

Sample 3:

Largest found root is now C:\Program Files, because it is %CSIDL_PROGRAM_FILES%. It is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\Sample Suite\SubApp\sample3.doc

Sample 4:

Largest found root is now C:\My Documents, because that is %CSIDL_PERSONAL%. That is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\sample4.doc

In this case, %CSIDL_PERSONAL% evaluates differently on the source computer, a Windows 98 computer, and the destination computer, a Windows XP computer. This is why the final path is different from the source path, even though they had the same CSIDL root.

Sample 5:

Largest found root is now C:\My Documents\My Pictures, because that is %CSIDL_MYPICTURES%. This is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\sample5.doc

Sample 6:

Largest found root is now C:\Windows, because that is %CSIDL_WINDOWS%. This is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\sample6.doc

Sample 7:

Largest found root is now C:\Windows\System32, because that is %CSIDL_SYSTEM%. This is replaced with %CSIDL_PERSONAL% resulting in a final path of:

C:\Documents and Settings\UserName\My Documents\sample7.doc

Final Destination Files

C:\Documents and Settings\UserName\My Documents\sample1.doc

C:\Documents and Settings\UserName\My Documents\Data\sample2.doc

C:\Documents and Settings\UserName\My Documents\Sample Suite\SubApp\sample3.doc

C:\Documents and Settings\UserName\My Documents\sample4.doc

C:\Documents and Settings\UserName\My Documents\sample5.doc

C:\Documents and Settings\UserName\My Documents\sample6.doc

C:\Documents and Settings\UserName\My Documents\sample7.doc

Recognized INF Variables

This is a comprehensive list of the variables recognized by the INF files. These variables do not have to be listed in the [RemapEnvVar] section. The INF files will also recognize any environment variables defined in the system, but determining the values of the variables listed here will always be attempted. Some of these variables cannot be determined due to operating system type and version dependencies. Please consult MSDN (http://msdn.microsoft.com/) or Microsoft Visual Studio documentation for additional information concerning CSIDL identifiers.

	Variable
	Meaning

	ALLUSERSPROFILE
	The folder for the profile of AllUsers. This is where shared documents and shared pictures are. Commonly this is C:\Documents and Settings\AllUsers.

	APPDATA
	Same as CSIDL_APPDATA

	CommonProgramFiles
	Same as CSIDL_PROGRAM_FILES

	CSIDL_ADMINTOOLS
	The folder per-user administrative tools, and customized MMC consoles are stored in. This is part of the current user’s profile, and roams as part of roaming user profiles.

	CSIDL_ALTSTARTUP
	The folder of the user’s nonlocalized startup group

	CSIDL_APPDATA
	The folder per-user application specific data is stored. This is part of the current user’s profile, and roams as part of roaming user profiles.

	CSIDL_BITBUCKET
	The virtual folder representing the Recycle Bin

	CSIDL_COMMON_ADMINTOOLS
	The AllUser version of CSIDL_ADMINTOOLS

	CSIDL_COMMON_ALTSTARTUP
	The AllUser version of CSIDL_ALTSTARTUP

	CSIDL_COMMON_APPDATA
	The AllUser version of CSIDL_APPDATA

	CSIDL_COMMON_DESKTOPDIRECTORY
	The AllUser version of CSIDL_DESKTOP

	CSIDL_COMMON_DOCUMENTS
	The AllUser version of CSIDL_PERSONAL

	CSIDL_COMMON_FAVORITES
	The AllUser version of CSIDL_FAVORITES

	CSIDL_COMMON_PROGRAMS
	The AllUser version of CSIDL_PROGRAMS

	CSIDL_COMMON_STARTMENU
	The AllUser version of CSIDL_STARTMENU

	CSIDL_COMMON_STARTUP
	The AllUser version of CSIDL_STARTUP

	CSIDL_COMMON_TEMPLATES
	The AllUser version of CSIDL_TEMPLATES

	CSIDL_CONTROLS
	The virtual folder containing icons for the Control Panel applications

	CSIDL_COOKIES
	The per-user folder for storing Internet cookies

	CSIDL_DESKTOP
	The virtual folder that is the root of the namespace; the Windows Desktop

	CSIDL_DESKTOPDIRECTORY
	The per-user folder where desktop items are stored

	CSIDL_DRIVES
	My Computer, a virtual folder

	CSIDL_FAVORITES
	The per-user folder where favorites are stored

	CSIDL_FONTS
	The folder where fonts are stored

	CSIDL_HISTORY
	The per-user folder where the IE history is stored

	CSIDL_INTERNET
	The virtual folder representing the Internet

	CSIDL_INTERNET_CACHE
	The per-user folder that is the Internet cache

	CSIDL_LOCAL_APPDATA
	The folder where per-user application-specific data is stored. This is part of the current user’s profile, but does not roam as part of roaming user profiles.

	CSIDL_MYMUSIC
	The per-user folder for storing music

	CSIDL_MYPICTURES
	The per-user folder for storing pictures

	CSIDL_MYVIDEO
	The per-user folder for storing video

	CSIDL_NETHOOD
	The per-user folder where network link objects are stored

	CSIDL_NETWORK
	The virtual folder representing the network

	CSIDL_PERSONAL
	The per-user folder for My Documents

	CSIDL_PRINTERS
	The virtual folder containing installed printers

	CSIDL_PRINTHOOD
	The per-user folder storing printer link objects

	CSIDL_PROFILE
	The profile path for the user currently logged in

	CSIDL_PROGRAM_FILES
	The Program Files folder

	CSIDL_PROGRAM_FILES_COMMON
	The folder for components shared across programs

	CSIDL_PROGRAMS
	The per-user folder containing a user’s programs group in the Start Menu

	CSIDL_RECENT
	The per-user folder with links to recently used files

	CSIDL_SENDTO
	The per-user folder containing Send To items

	CSIDL_STARTMENU
	The per-user folder representing the Start Menu

	CSIDL_STARTUP
	The per-user folder representing the Startup group

	CSIDL_SYSTEM
	The Windows system folder, commonly C:\Windows\System32

	CSIDL_TEMPLATES
	The per-user folder for Templates

	CSIDL_WINDOWS
	The same as SYSTEMROOT or WINDIR

	PROFILESFOLDER
	The folder where all the profiles are stored

	ProgramFiles
	Same as CSIDL_PROGRAM_FILES

	SYSTEM
	The primary system folder under Windows (System on Win9x, and System32 on NT systems)

	SYSTEM16
	The System folder under Windows

	SYSTEM32
	The System32 folder under Windows

	SYSTEMROOT
	The path to the Windows installation

	TEMP
	The folder user for temporary storage

	TMP
	Same meaning as TEMP

	USERPROFILE
	Same as CSIDL_PROFILE

	WINDIR
	The path to the Windows installation

The Default INFs and Their Components/Applications

Migsys.inf

Migsys.inf contains settings related to the operating system. The components in this file are:

	· Accessibility Options

· Classic Desktop (pre-Luna look & feel)

· Display Properties

· Folder Options

· Fonts

· Internet Options

· Localization / International Settings
	· Mouse and Keyboard

· ODBC Data Source Names

· Outlook Express

· Screen Saver Selection

· Sounds and Multimedia

· Taskbar

These components are listed in the [System Settings] section in Migsys.inf. To disable the migration of any of these settings, insert a semicolon (;) before the line that lists the setting group you want to disable.

This is an example of disabling the migration of Mouse and Keyboard.

[System Settings]

Accessibility, %accessibility%

Fonts,, dir, %csidl_fonts%

;Mouse and Keyboard, %mouse_and_keyboard%

Browser, %internet_settings%

International, %International%

Multimedia, %Multimedia%

Outlook Express, %outlook_express%

Display, %display%

ScreenSaver, %screensaver%

FolderOptions, %folderoptions%

TaskBar, %taskbar%

Classic, %classic%

Notice the semicolon in front of the fourth line. This will cause USMT to ignore this line.

In order not to migrate any of these settings, do not include this INF on the command line. (For more information, see "Take All vs Take Known.") The INF rules for components (like Mouse and Keyboard) can modify the settings that are migrated. To comment out a line, add a semicolon in front of it.

Miguser.inf

Miguser.inf contains settings more specifically related to users. The components in this file are:

	· Desktop

· Favorites

· My Pictures

· My Documents

· Shared Desktop
	· Shared Documents

· Shared Favorites

· Shared Start Menu Items

· Start Menu Items

These components are listed in the [User Settings] section in Miguser.inf. To disable the migration of any of these settings, insert a semicolon (;) before the line that lists the setting group that you want to disable. Below is an example of disabling the migration of Start Menu Items.

[User Settings]

Desktop Items,, dir,%csidl_desktopdirectory%

Shared Desktop Items,, dir,%csidl_common_desktopdirectory%

;Start Menu Items,, dir,%csidl_startmenu%

Shared Start Menu Items,, dir,%csidl_common_startmenu%

Favorites,, dir,%csidl_favorites%

Shared Favorites,, dir,%csidl_common_favorites%

My Pictures,, dir,%csidl_mypictures%

My Documents,, dir,%csidl_personal%

Shared Documents,, dir,%csidl_common_documents%

Notice the semicolon in front of the fourth line. This will cause USMT to ignore this line.

In order not to migrate any of these settings, do not include this INF on the command line. (For more information, see "Take All vs Take Known.") The INF rules for components (like Start Menu Items) can modify the settings that are migrated. To comment out a line, add a semicolon in front of it.

Migapp.inf

Migapp.inf contains settings more specifically related to users. The components in this file are:

	· Access 2000

· Access 97

· Access XP

· Acrobat Reader 4.0

· Acrobat Reader 5.0

· Adobe Photoshop Suite 6

· AIM

· BattleCom

· Command Prompt

· CuteFTP

· Eudora 5

· Excel 2000

· Excel 97

· Excel XP

· FrontPage XP

· FrontPage® 2000

· GameVoice 1

· GetRight 4

· GoZilla

· ICQ

· Lotus SmartSuite

· Microsoft Office

· Money 2001

· MSN Messenger

· MSN Zone

· MSN® Explorer

· Music Match Jukebox

· Netmeeting®
· Odigo
	· Outlook 97 & 98

· Outlook XP

· Outlook® 2000

· PhotoDraw® 2000

· PowerPoint 97

· PowerPoint XP

· PowerPoint® 2000

· Prodigy Internet

· Publisher 2000

· Publisher XP

· Quicken 2001

· Quicken 2001 Home & Business

· QuickTime Player 5

· RealJukebox 2

· RealPlayer 8 Basic

· RogerWilco

· Sonique

· WinAmp

· Windows Media Player

· Windows Messenger

· Windows Movie Maker

· WinZip

· Word 2000

· Word 97

· Word XP

· WordPerfect Office 2000

· Works 2001

· WS_FTP LE 5

· Yahoo Messenger

These components are listed in the [Applications] section in Migapp.inf. To disable the migration of any of these settings, insert a semicolon (;) before the line that lists the setting group that you want to disable. Below is an example of disabling the migration of Adobe Photoshop Suite 6.

[Applications]

Acrobat Reader 40, %acroread40%

Acrobat Reader 50, %acroread50%

;Adobe Photoshop Suite 6, %photoshop6%

AIM, %AIM%

BattleCom, %battlecom%

CmdExe, %cmdexe%

CuteFTP 4, %cuteftp4%

Notice the semicolon in front of the fourth line. This will cause USMT to ignore this line.

In order not to migrate any of these settings, do not include this INF on the command line. (For more information, see "Take All vs Take Known.") The INF rules for components (like Adobe Photoshop Suite 6) can modify the settings that are migrated. To comment out a line, add a semicolon in front of it.

Sysfiles.inf

This is a list of files that must not be migrated despite any other rules. These are operating system files that will conflict with the newer version of the files on Windows XP. SysFiles.INF file should not be modified. The only modification that you might want to make is to add more files to the list of files that never migrate under any circumstances.

Migwiz.inf

Migwiz.inf is the primary INF file for the FASTWiz GUI. It is discussed in detail later in this document.

Migration.inf

Migration.inf is created by Scanstate. It contains much of the state collected on the source computer. Migration.inf is stored in the destination location provided on the command line.

Files and Settings Transfer Wizard INF and Migwiz.inf

[CopyFiles]

The list of files placed onto the wizard disc that FASTWiz creates.

If you create a new INF for the GUI to use during the migration, the INF must be included in this list. Add the file name in a separate line.

[OOBE]

Reserved for future use.

[Settings Only]

The components transferred when the user selects Settings Only, regardless of transport.

[Settings Only.Ext]

The components transferred when the user selects Settings Only, and the transport is not floppy.

[Files Only]

The components transferred when the user selects Files Only, regardless of transport.

[Files Only.Ext]

The components transferred when the user selects Files Only, and the transport is not floppy.

[Files And Settings]

The components transferred when the user selects Files And Settings, regardless of transport.

[Files And Settings.Ext]

The components transferred when the user selects Files And Settings, and the transport is not floppy.

[Screened Extensions]

These are file types that the user does not transfer when the list of File Types to add is displayed. If the user manually adds the file type by using the edit box, the file type will be transferred (unless blocked by Sysfiles.inf).

[EXT.IgnoreEXE]

FASTWiz will automatically include most registered file types when the user selects Files Only or Files and Settings. If the type handler is one of these executables, then it is not included as a default type to transfer.

[EXT.Exclude]

Regardless of registration, these File Types are not added to the list of items to migrate by default. However, the user can still manually add them. If the File Types are also listed in Sysfiles.inf, they will not be migrated, regardless of what the user does.

[EXT.Include]

These file types are included in the default items to migrate, regardless of whether they are registered. The user can manually remove them.

[AppsToInstallOnDest]

Applications listed here need to be installed on the destination computer before the settings are applied. The user will be warned at the end of the scan to ensure that these applications are installed on the destination computer first. The user is also warned on the apply side that the applications must be installed before applying the settings. In most cases, if the application is installed later to the same location where it was installed on the former computer, it will still work. However, this behavior is not reliable.

Migration.inf – The Command-Line State Store

The Migration.inf is created by Scanstate and holds most of the migrating settings. In general, it must not be modified. It most often includes the sections listed below. For debugging issues, check what is stored in the Migration.inf to ensure that the state was scanned correctly.

[Version]

[Environment]

[Object Types]

[Data]

[Registry]

[File]

[Cookies]

[Printers]

[RasConnection]

[MappedDrives]

Command-Line Parameters And Usage

USMT consists of two command-line tools and the FASTWiz GUI tool. This section discusses the command-line parameters and usage of Scanstate.exe and Loadstate.exe.

Scanstate.exe is used to collect the user’s state (files and settings) from the former computer and installation.

Loadstate.exe applies the user state collected by Scanstate.exe on the new computer and installation.

These tools are located on the Windows XP CD in the ValueAdd\MSFT\USMT folder.

Unicode or ANSI

There are Unicode and ANSI versions of Scanstate.exe tools. The Unicode version is for scanning NT-based systems (Windows NT, Windows 2000, and Windows XP), and is located in ValueAdd\MSFT\USMT. The ANSI version is for scanning 9x-based systems (Windows 95, Windows 98, and Windows ME), and is located in ValueAdd\MSFT\USMT\ANSI. Internet Explorer version 4.0 or later must be installed with either the Unicode or the ANSI version.

Regardless of which version of Scanstate.exe is used, the Unicode version of Loadstate.exe in ValueAdd\MSFT\USMT must be used to apply the state.

Take All vs. Take Known

When performing a migration with USMT you can use one of two models, Take All or Take Known. These refer to the user’s registry (HKEY_CURRENT_USER). The recommended solution is to use the Take Known model.

In the Take All model, HKEY_CURRENT_USER is migrated in its entirety, aside from rules in the INFs to exclude certain portions.

	Advantages
	Disadvantages

	· Many settings for non-supported applications are also migrated successfully.

· More like the upgrade experience.
	· Less controlled migration.

· Garbage in HKEY_CURRENT_USER is also migrated.

· Risk of some applications not working correctly due to invalid settings for the new environment.

In the Take Known model, the only parts of HKEY_CURRENT_USER that are migrated are the ones indicated by the INFs.

	Advantages
	Disadvantages

	· Controlled Migration.

· Highly unlikely to break anything.
	· INFs must be customized to handle applications not supported by default.

Suggested Command-Lines

Remember:

· Scanstate must be run by the user who is migrating.

· Loadstate must be run by a user with local administrator access who is not the user who is migrated.

· The user’s profile must not exist on the destination computer before running Loadstate.exe.

Take Known Model (Recommended)

Scanning:

Scanstate \\ServerName\Share\Folder /I miguser.inf /I migapp.inf /I migsys.inf /I sysfiles.inf /v 7 /x /s /f

Applying:

Loadstate \\ServerName\Share\Folder /v 7

Take All Model

Scanning:

Scanstate \\ServerName\Share\Folder /I miguser.inf /I migapp.inf /I migsys.inf /I sysfiles.inf /v 7

Applying:

Loadstate \\ServerName\Share\Folder /v 7

Command-Line Parameters

Scanstate

	Parameter
	Meaning

	/?
	Invokes Help.

	/i filename.inf
	Specifies an INF file containing rules that define what state to migrate. Multiple /i parameters can be used.

	/l logfile.txt
	Specifies a path and file name to save the log to. By default the log is saved in CSIDL_LOCAL_APPDATA\scanstate.log.

	/v <Verbosity>
	Specifies the level of detail used in the log.
Use 0 (default) for least detail. Use 7 for most detail.

	/x
	Specifies that no settings or files be migrated by default.

	/s
	Specifies that settings listed in the INFs be migrated. “System” elements are also migrated. These are Network Printers, RAS Connections, and Cookies.

	/f
	Specifies that files listed in the INFs be migrated.

	/u
	Enables collection of the entire HKEY_CURRENT_USER by default. (Scanstate.exe should use the Take Known model.)

	/c
	Specifies to continue when encountering an error that can be ignored. (An error code is still returned.)

	/p
	Pre-Scan the system to determine how much storage space will be needed. It generates a space estimate file (USMTsize.txt) instead of an actual store. The file is a tab-delimited file with two columns. The first column is block size, and the second is how many bytes are required at that block size. The first line of the file is the numbers for the store location indicated on the command-line.

	/md <domain name>
	Provides an easy way to change the domain name during migration. If after the migration the user will be part of a different domain, this is an easy way to provide the domain the user should be created in.

	/mu <user name>
	Provides an easy way to change the user’s logon name during migration. If after the migration the user will have a new logon name, this is an easy way to change it so the user is created with the correct logon name.

	/o
	If there is already a migration store at the indicated target location, the store is overwritten without warning.

If /x, /f, /s, and /u are not used on the command-line, the default is /f /s /u.

/x is ignored if /f /s /u are also used.

Loadstate

	Parameter
	Meaning

	/?
	Invokes Help.

	/i filename.inf
	Specifies an INF file containing rules that define what state to migrate. Multiple /i parameters can be used.

	/l logfile.txt
	Specifies a path and file name to save the log to. By default the log is saved in CSIDL_LOCAL_APPDATA\scanstate.log.

	/v <Verbosity>
	Specifies the level of detail used in the log.
Use 0 (default) for least detail. Use 7 for most detail.

	/x
	Specifies that no settings or files be migrated by default.

	/s
	Specifies that settings listed in the INFs be migrated.

	/f
	Specifies that files listed in the INFs be migrated.

	/u
	Enables collection of the entire HKEY_CURRENT_USER by default. (Scanstate.exe should use the Take Known model.)

	/md <domain name>
	Provides an easy way to change the domain name during migration. If after the migration the user will be part of a different domain, this is an easy way to provide the domain the user should be created in.

	/mu <user name>
	Provides an easy way to change the user’s logon name during migration. If after the migration the user will have a new logon name, this is an easy way to change it so the user is created with the correct logon name.

	/q
	Loadstate migrated settings to the current user. The migrated user is not created, and administrator rights are not required. WARNING: This will have slightly different results than running from administrator mode. For example, security can prevent some settings or files from being restored. Also, the /md and /mu switches are ignored.

If /x, /f, /s, and /u are not used on the command-line, the default is /f /s /u.

/x is ignored if /f /s /u are also used.

Return Codes and Logs

Scanstate.exe and Loadstate.exe return 0 if successful. A value other than 0 means there was an error. The common Windows error codes are used. You can use a tool like Error Lookup (included with Visual Studio) to learn more details on specific error codes.

USMT (command-line) logs are stored in %CSIDL_LOCAL_APPDATA% for the user running the tool. On a Windows XP system, this is usually C:\Documents and Settings\UserName\Local Settings\Application Data. The Scanstate.exe log file is scanstate.log. The Loadstate.exe log file is loadstate.log. These logs can be written to other folders and other file names by using the /l switch.

FASTWiz logs are also stored in %CSIDL_LOCAL_APPDATA%. The FASTWiz log file is FASTWiz.log. The results displayed on the final page of FASTWiz are stored in FASTWiz.htm.

Common Scenarios

To Create An INF File

13. Start Notepad (or your preferred text editor).

14. Create a [Version] section.

· Add the signature line.

15. Create an empty [Applications] section.

16. Create an empty [Copy This State] section.

17. Create an empty [Strings] section.

18. Save the file using an INF extension.

To Add A Component

19. List the component in an [Applications] section.

· Optional: Create a [.Environment] section.

· Optional: Create a [.Detect] section to detect if the application is installed.

· Optional: Create [.Detect.n] sections instead.

20. Create a [.Instructions] section listing the rules to do the migration.

21. Create a section for each section referenced in the [.Instructions] section listing the objects to migrate.

To Add Individual State
22. Add an INF command to the [Copy This State] section.
23. Create a section for the section named with the INF command in the [Copy This State] section listing the objects to migrate.

Summary

This document explains the INF files for the User State Migration Tools (USMT), Files and Settings Transfer Wizard (FASTWiz), and the INF commands. It also explains how to perform basic modifications to these files and how to create your own INF files to use with the migration tools.

Information Technology (IT) professionals and consultants who customize USMT for Windows XP deployments are the primary audience of this document. The reader is assumed to have a basic understanding of scripting, although no real programming knowledge is required. It is recommended that the reader also be familiar with using a text editor, such as Notepad or Microsoft® Visual Studio®.

For large-scale automated migrations with the User State Migration Tool, IT professionals can refer to User State Migration in Windows XP at, http://www.microsoft.com/windowsxp/pro/techinfo/howitworks/userstate.

Definition: Re-rooting

Re-rooting preserves the folder hierarchy in which the file or folder is located, but places it all in the folder given as the new root.

�Should this be “does not override”?? Checking with Nathan…

PAGE
Windows XP White Paper

User State Migration Tool – INF Commands

33

